

Andrei Borshchev Nikolay Churkov

December 2017



© The AnyLogic Company | www.anylogic.com

## AnyLogic is the most used simulation software

• see LinkedIn user group sizes and number of WSC case studies (2017)





## industry leaders choose AnyLogic for simulation



#### most of simulation tools can do this:

- Discrete event modeling with process flowcharts
- "Discrete rate" modeling
- Scripting in addition to drag and drop
- 2D and 3D animation
- Optimization
- Parameter variation and Monte Carlo experiments
- Built-in database
- Visualize, import and export data

|    | branch        | employee_type                | number |
|----|---------------|------------------------------|--------|
|    |               | -                            | ,      |
|    | Wichita Falls | Back Office                  | 19     |
| 2  | Wichita Falls | Credit Specialist            | 20     |
| 3  | Wichita Falls | Financial Sevices Sales      | 16     |
| 4  | Wichita Falls | Business Development Manager | 1      |
| 5  | Wichita Falls | Head of Sales Group          | 2      |
| 6  | San Antonio   | DSA                          | 1      |
| 7  | San Antonio   | Back Office                  | 56     |
| 8  | San Antonio   | Deputy Regional Director     | 2      |
| 9  | San Antonio   | Credit Specialist            | 96     |
| 10 | San Antonio   | Financial Sevices Sales      | 20     |















Professional agent based modeling

- Apply simulation in the areas where it had not been possible before, like marketing, social and ecosystems
- Bring models from traditional areas, like supply chains and manufacturing, to a new level of flexibility and accuracy





- Professional agent based modeling
- Multi-method modeling

- Develop models using all three existing simulation methods in any combination to simulate systems of any complexity
- AnyLogic was the first tool to introduce multimethod simulation modeling, and still remains the only software that has that capability.





- Professional agent based modeling
- Multi-method modeling
- Industry-specific libraries

- A unique suite of industry-specific tools in one package, at no additional cost
- Process Modeling and Fluid: generic libraries for logical processes with discrete items and bulk/liquid transfer
- Pedestrian, Rail, and Road Traffic: detailed physical-level simulation of objects' movement and interaction
- Material Handling: conveyor networks, stations, AGVs, cranes, robots





- Professional agent based modeling
- Multi-method modeling
- Industry-specific libraries
- GIS maps integration

- Use geographic locations
- Search for places, regions, and routes
  both at design time and at runtime
- Move objects along the real routes
- Use tiles and shape files
- Choose tile and route providers





- Professional agent based modeling
- Multi-method modeling
- Industry-specific libraries
- GIS maps integration
- Extension and customization

- Create reusable custom objects and object libraries for your application areas and share them with colleagues
- Create flexible models that fully configure themselves from external data source when they are run
- Build custom experiment workflows and extend models with Java

#### Generic supply chain model





- Professional agent based modeling
- Multi-method modeling
- Industry-specific libraries
- GIS maps integration
- Extension and customization
- Model export and integration -

- Export models as standalone Java applications to deliver them to clients
- Make models a part of your existing dataflow and integrate them in your operational software like ERP, CRM, MRP, or BI systems for robust planning and risk reduction





- Professional agent based modeling
- Multi-method modeling
- Industry-specific libraries
- GIS maps integration
- Extension and customization
- Model export and integration
- Simulation in the Cloud

- Use any device to run your model, including phones and tablets
- Provide online simulation analytics to your clients with web dashboards
- Leverage high-performance cloud computing for complex experiments
- Deliver models privately to your clients using secure web repository
- Share simulations publicly with the community and collaborate in the cloud
- TRY IT RIGHT NOW: cloud.anylogic.com
   FREE & NO LOGIN NEEDED!





# material handling



### separation of logic and spatial structure in AnyLogic

- One of the fundamental principles of process modeling in AnyLogic is separation of layout (physical structure) and process logic
  - "Blocks" in the process flowchart may refer to the components of the spatial structure, which are called "markup elements"
  - In some models, e.g. Business Process, there may be very complex process flow (logic) and simple or even none layout
  - In other models (e.g. Pedestrian or Road Traffic) space markup can be very detailed and complex and actually drives the model whereas the logic can be very simplistic ("walk / drive from A to B")
  - Material Handling is definitely of the 2<sup>nd</sup> type



Traffic flow logic



## material handling functionality of AnyLogic (basic)



- Generic Process Modeling Library and generic space markup offers basic functionality:
  - All blocks needed for modeling process logic, including resource management
  - Simple spatial network (paths and nodes)
     and ability to send an agent to a particular location
  - Simple storage (pallet rack, rack system)
     and store/pick operations
  - Simplistic single conveyor
  - Ability to send resource units over the network, attach and detach them



## material handling functionality of AnyLogic (advanced)

- AnyLogic Material Handling Library (release date April 2018)
   radically extends MH modeling functionality
- Interoperates with all other libraries (as always)
- Includes conveyor & station network with auto-routing:
  - ConveyorPath, PositionOnConveyor, PhotoEye
  - Turnplate, TransferTable, Turntable
  - Station, PickupStation, DropoffStation, CustomStation
- ASRS and modern storage systems
- Robots, cranes, transfer cars
- AGVs with collision avoidance and routing logic



















## elements of the Material Handling Library (draft)





#### how it works

- Markup elements are connected to each other and form Conveyor Network
- Convey block moves material items from through the conveyor network providing automatic routing
- Actions over items (including delays, drop-off, pickup, resource utilization, etc.) are defined at stations, which are a part of markup
- If logic is more complex, use Custom Station and arbitrary blocks from the Process Modeling Library



Conveyor network



Process logic (in the extreme case)



## material item (in AnyLogic they are called agents)

- Three dimensions
- Orientation on conveyor
  - Determined as the agent enters the conveyor
  - Can change e.g. after passing a transfer table
  - Can be set manually in a property of the flowchart block or by function call (when agent is not on conveyor)
- Bi-directional mapping agent <-> markup allows you to obtain:
  - The current conveyor network element, if any
  - Position of the agent on conveyor
  - Agents before and after
  - And also, given the conveyor, one can find out which agents are on it







## Convey [flowchart block]



- Manages travelling of material items through a Conveyor Network, including stations, if any
  - Once an agent enters Convey, it starts its journey through the network
  - Convey blocks can follow each other in flowchart

#### Routing types:

- Auto routing: Convey uses the shortest way to the end point avoiding forbidden paths that can be specified
- Custom routing: the user can specify a list of elements to form a route

#### Properties:

- Source location (Position On Conveyor, Path+offset, current)
- Target location (Position On Conveyor, Path+offset, Custom Station)
- Option of changing orientation on conveyor
- Option of keeping agent on conveyor after reaching destination



# Conveyor Path [markup element]

- Represents a single continuous conveyor
  - Geometrically, this is a multi-segment path with straight and arc segments
- Properties:
  - Type (belt, roller, fixed cell)
  - Path form and Width (defined graphically)
  - Speed
  - Gap size
  - Acceleration/Deceleration
  - Reverse movement ?
- Accumulation capability is defined by conveyor path type
- Conveyor Paths can be connected:
  - To special elements connecting conveyors: Transfer Tables, Turntables, Turnplates
  - To other paths directly or via Split / Merge elements





### Turn Station [markup element]

 Connects two conveyor paths (or breaks one) along a straight line



- Passing a Turn Station involves time delay and may change orientation of the agent
- Use cases:
  - Setting the same orientation for all agents (e.g., before scanning)
  - Rotate all passing agents by a specific angle (to model wrapping or reeling processes)
- Parameters:
  - New agent orientation
  - Rotation angle
  - Rotation speed
  - Speed of passing through







# Transfer Table [markup element]

- Connects from 2 to 4 Conveyor Paths and routes agents
- Has at least one input and one output path
- Looks like a rectangle; Conveyor Paths can be connected to the center of any of the four sides
- Orientation of the agent changes according to the transfer logic
- Properties:
  - Switching delay time
  - Speed of passing through





left

right

front

front



# Turntable [markup element]

- Connects N Conveyor Paths and routes agents
- Has at least one input and one output path
- Looks like a circle; Conveyor Paths are connected at arbitrary angles
- Passing a turntable does not change agent orientation
- Properties:
  - Rotation speed
  - Speed of passing through









### Position On Conveyor [markup element]

- Represents a certain point on conveyor
  - Unlike Photo-eye that watches an area
  - There can be multiple Position On Conveyor elements on a single path
- Use cases:
  - A photo-eye
  - Target location of agent's route through conveyor
  - Position where an agent is placed / picked from the conveyor
- Conveyed agent can be stopped (and conveyor possibly blocked) at a position













## Area On Conveyor [markup element]

 Represents a certain area on conveyor that is being watched by e.g. a photo-eye, unlike
 Position On Conveyor that refers to a point



- Use cases:
  - A photo-eye watching a certain area
  - Estimation of conveyor line occupation
  - Getting the list of agents in the certain area
- Single or multiple photo-eyes can be placed at arbitrary positions of conveyor paths





## Station [markup element]

- Models a simple processing device or an operation/process
- While the agent travels through the Conveyor Network (being in a Convey block), it is processed by Stations it meets on the way
  - No need to add flowchart blocks to model simple operations
- Properties:
  - Delay time
  - Capacity
  - Optionally, resources needed to perform the operation
- Specific callbacks:
  - On process started
  - On process finished





### **Custom Station [markup element]**

- Models an operation/process with custom logic that cannot be described with capacity/delay/use resources parameters
- Looks like a polygon with conveyor paths connected to it
  - Custom Station can be set as a destination point of Convey block
  - Routes can not be built through a
     Custom Station due to custom logic!
- Operations are specified by a process flowchart
  - E.g. assembling process that combines agents of different types from several conveyors





## general features of conveyor network markup

- Each element has callbacks:
  - On leading edge enter
  - On leading edge exit
  - On trailing edge exit
  - On trailing edge enter



- The user can define custom dynamic routing logic:
  - Dynamic priorities at a merge of conveyor paths
  - Dynamic routing depending on e.g. path occupancy/congestions
- Fach element has
  - Statistics
  - Failure/maintenance profiles (MTTF, MTTR, MTBPM, MTTPM)
- You can create a conveyor network dynamically by reading the layout e.g. from a database or a spreadsheet



# Conveyor Enter and Conveyor Exit [flowchart blocks]

conveyorEnter



- Places an agent in the Conveyor
   Network, but doesn't let it move
  - May block other agents
  - [Normally, you just use Convey block to place agents in]
- Use case:
  - A worker has placed a box on the conveyor belt, but needs to e.g. label it before it goes

conveyorExit



- Removes the agent that has finished its movement from the Conveyor Network
  - [Normally, you remove it by checking "Remove" in the Convey block]
- Use case:
  - The agent has reached its final destination in the network, but waits for e.g. some resource, and still blocks other agents



#### **ASRS**

- ASRS can be connected to Conveyor networks
- Standard 3D shapes, animation of storing and retrieving from a rack
- Equipment statistics









#### robots, cranes, transfer cars

- Implemented as markup elements that can be:
  - A part of a Conveyor Network, or
  - Standalone, referenced by MoveBy... blocks
- Collision detection and auto management of bridge cranes and transfer cars sharing rails



Statistics

Failure/maintenance profiles (MTTF, MTTR, MTBPM,

MTTPM)













Flowchart block refers to the Robot markup



## **Automated Guided Vehicles (AGVs)**

- AGV movement is a combination of free space, lane-guided or grid-guided (KIVA) movement featuring:
  - Collision avoidance (sensing other AGVs, workers)
  - Deadlock detection and resolution (e.g. when sharing same aisle)
  - Auto routing around obstacles (walls, pillars, racks)
- AnyLogic already includes relevant technology in Pedestrian and Road Traffic libraries
- Optionally, tug trains











#### AGVs additional features

#### Routing

- Shortest path with minimum number of turns
- Minimum turn radius considered
- Zones with limited capacity
- Optionally, priorities of AGV's tasks

#### Movement

- Acceleration/deceleration depending on turn radius
- Speed reduction in case other objects detected in proximity

#### AGV fleet management

- Auto (depending on current task list)
- Custom (user-controlled)

#### Statistics:

Utilization, delivery time distribution, heat map



#### 3D Animation

- Conveyor markup animation :
  - Multiple conveyor types
  - Supports
  - Any form of conveyor is supported
  - Turnplate, turntable, transfer table animation
- Photo-eyes, scanners, typical stations
- Workers
- Storage systems
- Robots, cranes
- Forklifts, trolleys, AGVs















### thank you!

Come to AnyLogic Conference 2018!



