30 Jun

Presentación: R como herramienta de soporte para Analytics y simulación

Recientemente tuve la oportunidad de dar una charla sobre las ventajas de utilizar R como soporte para profesionales en Analytics y Simulación.

Si bien existen diferentes software especializados para realizar análisis de datos cada uno con sus ventajas y desventajas, en los últimos años los especialistas de diversas disciplinas han coincidido en la necesidad de estandarizar procesos y análisis en un solo lenguaje, la gran mayoría han optado por R (Python es otra buena alternativa). Esta presentación pretende mostrar las ventajas del lenguaje R (y algunas aplicaciones) como herramienta de soporte a profesionales que requieren manipulación y análisis de datos, en mi caso particular como consultor en optimización y simulación.

A continuación el material de soporte de la presentación.

29 Jun

Witness Horizon

La empresa británica Lanner lanzó a comienzos de Junio de 2016 su nueva versión de su software de simulación Witness Horizon. Esta versión cuenta con varias mejoras, entre ellas:

  • Una fresca y re-diseñada interfaz gráfica incluyendo íconos, menús, etc.
  • Nuevos y personalizados grupos de elementos que pueden ser agregados al software según los requerimientos del usuario
  • Mejor renderización 3D
  • Comandos para navegar en la animación 3D
  • Mejoras en las funciones continuas combinadas con la librería discreta como en el caso de la modelización de fluídos
  • Mayor integración con fuentes de información externa incluyendo bases de datos, hojas de cálculo e incluso servicios de almacenamiento en la nube.

El siguinte video es un breve demo de las nuevas funcionalidades en 3D

Una lista mas completa de especificaciones puede ser consultada en el siguiente link

A continuación un segundo video donde se presentan con más detalle varias de las funcionalidades de la nueva versión.

26 Jun

Muestreo y análisis de resultados usando AnyLogic PLE

marbles1

  • Intro
  • Teoría
  • AnyLogic
  • Muestreo
  • Descarga

Una vez construido un modelo de simulación es necesario ejecutar un Análisis Resultados para garantizar la robustez de del modelo y la validez de los hallazgos.

El análisis de resultados consiste en ejecutar múltiples repeticiones de un experimento haciendo o no cambios a una o varias variables de manera que se describa el comportamiento general del modelo y se identifiquen los patrones de los resultados dados diferentes valores de las variables de entrada. Si estas repeticiones se hacen con cambios incrementales en las variables de entrada, se conoce como Análisis de Sensibilidad. Si las variables de entrada tienen una distribución de probabilidad asociada se puede generar una secuencia combinada basada en dicha distribución, lo que se conoce como Monte Carlo. Cuando las variaciones son estratificadas (escalas uniformes) sin importar la distribución asociada se conoce como Variación de Parámetros.

AnyLogic en su versión PLE permite realizar Variación de Parámetros y Optimización. Versiones más avanzadsa como la versión profesional permiten además realizar Comparación de Experimentos, Monte Carlo, Análisis de Sensibilidad, Calibración y Experimentos personalizados (ver imagen).

exp

Siendo la variación de parámetros el único tipo de experimento disponible en la versión PLE para la fase post-simulación a continuación se explica cómo hacer muestreo y análisis de resultados usando este módulo y algunas maneras de implementar rutinas que incrementen su funcionalidad.

Al construir un modelo de simulación se debe establecer todo el espectro y distribución de las variables de entrada (parámetros). Para ello utilizamos muestreo y análisis estadístico. Esta parte pre-simulación será tratada en otro post.

Al finalizar el modelo, se deben ejecurar múltiples repeticiones con diferentes valores aleatorios y parámetros para establecer el rango total de salida. Idealmente se deben simular todos los escenarios posibles, sin embargo, en muchas ocasiones el número total de escenarios es tan alto que simular el espectro completo tarda demasiado. En estos casos es recomendable utilizar muestreo sobre los parámetros para elegir combinaciones estadísticamente representativas.

A continuación se explican los diferentes tipos de muestreo.

Tipos de Muestreo

Muestreo Aleatorio: Consiste en generar muestras eligiendo números al azar sobre la distribución de probabilidad acumulada. Esta técnica requiere un elevado número de muestras para conseguir una representación adecuada de la variable en estudio (cientos o miles de repeticiones).

Muestreo Estratificado: Consiste en segmentar la variable en grupos o estratos y elegir valores aleatorios al interior de cada sub-grupo para la simulación. Los estratos son generados a partir de información típica de la distribución observada. Requiere también de un elevado número de repeticiones aunque menor que el muestreo aleatorio.

Muestreo por Hipercubo Latino: Consiste en asignar distribuciones de probabilidad a cada variable de entrada y distribuir cada una en un número de intervalos equiprobables. Luego se eligen valores al interior de cada grupo y se combinan con las demás dimensiones de las otras variables, para obtener vectores completamente independientes y aleatorios como entradas del modelo. Dado que cada muestra es independiente, se requieren menos repeticiones pues se asume que una serie completa de experimentos con esta entrada es estadísticamente independiente.

Un inconveniente típico en este último método es que la representatividad de los resultados solo se puede evaluar luego de ejecutar todos los experimentos y en caso de no ser satisfactoria, se debe volver a empezar aumentando la cantidad de intervalos equiprobables. Una solución a este inconveniente es la utilización del Hipercubo Latino Escalable.

Segmentación

En otras ocasiones no es necesario conocer todo el espectro sino un segmento de él. Si el segmento es contínuo (ejemplo una variable puede distribuirse entre 100 y 200 visitas por hora pero solo se desea evaluar el impacto de mas de 160 visitas al día) se considera como una variación de parámetros con menos combinaciones. Cuando  las variaciones son discontinuas y combinadas, es mejor definir los escenarios previamente y luego ejecutar experimentos basados únicamente en la matriz de entrada. En AnyLogic esto se implementa fácilmente utilizando bases de datos o archivos externos.

Implementación en AnyLogic

Una vez se elige un nuevo experimento de tipo variación de parámetros, AnyLogic crea una nueva sesión en blanco donde se define la memoria total a utilizar, el agente de referencia (usualmente Main) y la forma como los parámetros van a interactuar (ver imagen). Estos parámetros pueden ser fijos o variables en un rango, es decir se fija un valor único o el valor inferior y superior, así como el paso (step) para su variación uniforme.

parVar0

De esta forma, si se tiene un modelo con 10 parámetros de entrada de las cuales 2 se planean fijas y 8 variables con 10 pasos por cada una, se deben tener al menos 100 millones de experimentos para cubrir una sola repetición de todas las simulaciones.

Ejemplo

Un ejemplo es el siguiente modelo en el cuál un taller cuenta con cuatro estaciones de trabajo en serie, cada una con un buffer de entrada con capacidad limitada. Las estaciones cuentan con un tiempo de procesamiento tn (9, 12, 8 y 14 minutos respectivamente) distribuido triangularmente más o menos 10% (ver imagen del modelo).

parVarMain2

Luego de haber ingresado 1000 unidades al sistema el modelo se detiene y verifica los indicadores claves de rendimiento. Estos son:

  • % de piezas completadas
  • Piezas en proceso promedio (WIP)
  • Tiempo de ciclo promedio
  • Tiempo total de operación del taller
  • Diferencia promedio de la utilización del mayor y menor buffer

Si suponemos que las capacidades de cada buffer pueden variar entre 1 y 20 unidades lo que representa 20 pasos ya que los variaciones son discretas, se cuenta en total con 160,000 diferentes configuraciones para evaluar todo el espacio (sin réplica).

Para comprobar esto creamos un experimento tipo variación de parámetros y asignamos los siguientes valores (ver imagen).

parVarImg1

Hacemos click en Create default UI para crear la interfaz. Luego añadimos 5 estadísticas locales (statComplete, statWIP, statCycleTime, statTotalTime, statDiffQ) en las cuales guardaremos el resultado de cada experimento así como tres histogramas (WIP, tiempo de ciclo y tiempo total).

En la sección indicando qué hacer luego de cada simulación (After simulation run) añadimos el siguiente código:

Y finalmente ejecutamos el experimento (ver imagen inferior).

parVarImg3

Como se puede observar ejecutar 160 mil  experimentos tomó cerca de 8 minutos (478.1 segundos), y los estadísticos permiten establecer que:

  • El % de copletado se encuentra entre 91.6 y 99.2 con media de 95.4%
  • El WIP entre 0.02 y 70.2 con media de 36.4 unidades
  • El tiempo de ciclo entre 112.2 y 1,077.4 con media de 613.8 minutos
  • El tiempo total de operación entre 12,823 y 13,998 con media de 13,395 minutos
  • La diferencia promedio de utilización de buffers entre 0.4% y 94.9% con media de 37.9%

Según se requiera se pueden crear experimentos específicos de optimización que arrojen la configuración indicada para por ejemplo minimizar el tiempo total de ciclo o minimizar el tiempo total de operación o minimizar el trabajo en proceso (otros post se dedicarán a la creación de experimentos de optimización).

A continuación explicaremos dos formas de realizar el muestreo de manera que el tiempo total de experimentación se reduzca.

Método Alternativo 1: Hipercubo usando R y AnyLogic

Creamos un hipercubo latino utilizando R y transferimos estos valores a AnyLogic para ejecutar específicamente simulaciones de estas configuraciones.

En primer lugar creamos un nuevo experimento de tipo variación de parámetros. Esta vez no asignamos variabilidad a los parámetros de entrada (ver imagen). Creamos la interfaz haciendo click en Create default UI.

parVarRImg4

Un inconveniente que tiene esta técnica es que la cantidad de experimentos (dimensiones del cubo) son definidas a través de la cantidad de réplicas (o usando la forma libre), en este caso escogemos un total de 2000 experimentos para representar el espacio total de 160,000 (representando un 1.25% del total de la población).

A continuación cargamos la librería RCaller y la importamos al experimento. Así mismo definimos las acciones a realizar antes y después de cada simulación pasar los parámetros y capturar las estadísticas (ver imágen siguiente).

parVarRImg5

Al igual que en la variación de parámetros, en este experimentos creamos cinco estadísticos y tres histogramas.

Adicionalmente creamos tres variables: totalExperimentos (int), dimensions (int) e hypercube (int[][]). Finalmente creamos una función llamada getHyperCube con el siguiente código:

Esta función se ejecuta al inicio de toda la serie de experimentos para crear el hipercubo en R (utilizando el paquete lhs) e importarlo a AnyLogic para almacenarlo en la variable local hypercube. Este hypercubo en realidad es una matriz donde cada fila representa la configuración de los buffer de cada experimento a correr.

parVarRImg6

Al ejecutar el experimento encontramos:

  • El tiempo total de simulación fue de tan solo 21 segundos (23 veces más rápido que el experimento original)
  • El % de copletado se encuentra entre 93.4 y 99.0 con media de 96.1%
  • El WIP entre 2 y 54 con media de 29 unidades
  • El tiempo de ciclo entre 138.6 y 867.59 con media de 511.9 minutos
  • El tiempo total de operación entre 13,061 y 13,947 con media de 13,508 minutos
  • La diferencia promedio de utilización de buffers entre 1.5% y 93.2% con media de 28.3%

Si bien las distribuciones no reflejan los mismos límites superiores e inferiores de la variación de parámetros anterior, los valores hallados se aproximan bastante, con un tiempo de simulación 23 veces inferior. Esta técnica es particularmente útil cuando se cuenta con capacidad limitada de computación y experimentos complejos donde el espectro completo puede tomar días enteros en ser simulado por tanto una muestra con resultados similares en menor tiempo es muy necesaria.

Método Alternativo 2: Segmentación

En este caso asumimos que solo deseamos simular las siguientes configuraciones:

  • Buffer 1: variando de 5 a 15 (step=1)
  • Buffer 2: solo puede ser 1, 5, 10 o 15
  • Buffer 3: siempre 5
  • Buffer 4: valores pares de 2 a 20

En este caso el total de experimentos a realizar es 440 (11*4*1*10).

Creamos entonces un experimento tipo variación de parámetros de forma libre con 440 repeticiones (ver imagen) y añadimos un archivo de Excel donde hemos creado previamente las 440 configuraciones.

parVarImg6

En las acciones antes y después creamos el siguiente código que permite leer el archivo de Excel y llenar la variable local hypercube con todas las configuraciones requeridas. Adicionalmente capturamos las estadísticas de rendimiento al finalizar cada experimento.

parVarImg7

Ejecutamos el experimento.

parVarImg8

Esta vez el experimento tomó solamente 2.3 segundos (sin repetición). El usuario puede repetir varias veces la matriz Excel y aumentar el número de experimentos en AnyLogic para añadir repeticiones.

El modelo soporte, la librería RCaller y el archivo Excel pueden ser descargados en el siguiente link.

Descarga

 

 

21 Jun

Cómo crear agentes con rangos de visión en AnyLogic

bulldozer

  • Contexto
  • Modelo
  • Video
  • Descarga

Con frecuencia se desea limitar el movimiento e iteración de los agentes a solo aquellos elementos que caen dentro un rango de visión limitado. Este modelo es una demostración de cómo se pueden crear rangos de visión a los agentes en un espacio determinado.

En este modelo se asumen agentes representando bulldozers esparcidos en un campo donde hay diferentes minas a las que los agentes deben trasladarse. Estos agentes solo pueden identificar las minas que se encuentran en el rango de visión establecido.

El modelo cuenta con dos tipos de agentes: MyAgents y Mine.

MyAgent representa el bulldozer cuya visión es limitada. La mina es el lugar donde el bulldozer debe desplazarse.

Los agentes estan contenidos en dos poblaciones: myAgents y mines, ambas inician vacías al comienzo del modelo mediante la función Setup. Esta crea los agentes, los ubica de manera aleatoria en el espacio y asigna parámetros. A continuación se presenta la función:

El usuario cuenta con diferentes botones donde puede seleccionar agentes, rotarlo y obtener los agentes dentro del rango de visión frente a él. Este rango de visión es determinado por el ángulo solamente (cualquier agente con un ángulo menor a una referencia predeterminada es aceptable. El usuario puede además incluir la distancia como parte del rango de visión, es decir no solo considerar las minas que estén dentro del ángulo de visión frente a el sino también dentro de una distancia determinada).

La selección del agente se realiza utilizando el siguiente código

El cálculo del ángulo y la distancia se hace en el siguiente código

Este código hace uso de dos funciones: getAngleTo y getDistanceTo. A continuación se presentan estas dos funciones:

 

Existen además botones para aumentar o reducir el ángulo de rotación de los bulldozers. El ángulo del campo de visión puede ser ajustado usando un slider. El código del slider se presenta a continuación:

El siguiente es un video del modelo en funcionamiento

El modelo en AnyLogic puede ser descargado en el siguiente Link

Comentario Final

Como se ha podido observar el modelo no pretende hacer más que reportar las minas frente al agente que están dentro de su campo de visión. El usuario puede agregar utilizar este código como base para agregar acciones más complejas como movimientos, ruteos e incluso algoritmos de decisión.

No olviden dejar su comentario!

%d bloggers like this: